429 research outputs found

    Plasma-Assisted ALD for the Conformal Deposition of SiO 2

    Full text link

    Frozen water waves over rough topographical bottoms

    Full text link
    The propagation of surface water waves over rough topographical bottoms is investigated by the multiple scattering theory. It is shown that the waves can be localized spatially through the process of multiple scattering and wave interference, a peculiar wave phenomenon which has been previously discussed for frozen light in optical systems (S. John, Nature {\bf 390}, 661, (1997)). We demonstrate that when frozen, the transmission of the waves falls off exponentially, and a cooperative behavior appears, fully supporting previous predictions. A phase diagram method is used to illustrate this distinct phase states in the wave propagation.Comment: 4 pages and 5 figure

    Gravity waves over topographical bottoms: Comparison with the experiment

    Full text link
    In this paper, the propagation of water surface waves over one-dimensional periodic and random bottoms is investigated by the transfer matrix method. For the periodic bottoms, the band structure is calculated, and the results are compared to the transmission results. When the bottoms are randomized, the Anderson localization phenomenon is observed. The theory has been applied to an existing experiment (Belzons, et al., J. Fluid Mech. {\bf 186}, 530 (1988)). In general, the results are compared favorably with the experimental observation.Comment: 15 pages, 7 figure

    Modeling the interactions of biomatter and biofluid

    Full text link
    The internal motions of biomatter immersed in biofluid are investigated. The interactions between the fragments of biomatter and its surrounding biofluid are modeled using field theory. In the model, the biomatter is coupled to the gauge field representing the biofluid. It is shown that at non-relativistic limit various equation of motions, from the well-known Sine-Gordon equation to the simultaneous nonlinear equations, can be reproduced within a single framework.Comment: 10 pages, 3 figure

    Cyber Security: China and Russia\u27s Erosion of 21st Century United States\u27 Hegemony

    Get PDF
    With Russia and China emerging as challengers to U.S. hegemony, the use of cyber warfare could tilt the current balance of power in either of their favors. Using various methods, hackers can acquire sensitive information and destroy online infrastructures. In the development of cyber warfare, China has become a seasoned veteran with computer virus operations dating back to 199714. Russia has emerged as a cyber aggressor, as seen in Russia’s cyber attacks on several countries in the last decade. This paper argues that, with the growth of foreign cyber technology, the probability of cyberspace being used as a military front by state or non-state actors against the United States increases

    Bandgaps in the propagation and scattering of surface water waves over cylindrical steps

    Full text link
    Here we investigate the propagation and scattering of surface water waves by arrays of bottom-mounted cylindrical steps. Both periodic and random arrangements of the steps are considered. The wave transmission through the arrays is computed using the multiple scattering method based upon a recently derived formulation. For the periodic case, the results are compared to the band structure calculation. We demonstrate that complete band gaps can be obtained in such a system. Furthermore, we show that the randomization of the location of the steps can significantly reduce the transmission of water waves. Comparison with other systems is also discussed.Comment: 4 pages, 3 figure

    Large time existence for 3D water-waves and asymptotics

    Full text link
    We rigorously justify in 3D the main asymptotic models used in coastal oceanography, including: shallow-water equations, Boussinesq systems, Kadomtsev-Petviashvili (KP) approximation, Green-Naghdi equations, Serre approximation and full-dispersion model. We first introduce a ``variable'' nondimensionalized version of the water-waves equations which vary from shallow to deep water, and which involves four dimensionless parameters. Using a nonlocal energy adapted to the equations, we can prove a well-posedness theorem, uniformly with respect to all the parameters. Its validity ranges therefore from shallow to deep-water, from small to large surface and bottom variations, and from fully to weakly transverse waves. The physical regimes corresponding to the aforementioned models can therefore be studied as particular cases; it turns out that the existence time and the energy bounds given by the theorem are always those needed to justify the asymptotic models. We can therefore derive and justify them in a systematic way.Comment: Revised version of arXiv:math.AP/0702015 (notations simplified and remarks added) To appear in Inventione
    • …
    corecore